(47) Bhatia, P.; Das, P.; Kumar, D. N-Alkylation of 4-Hydroxy-3,5-Dinitropyrazole: A Facile Route for the Synthesis of Insensitive Energetic Materials. Propellants, Explos. Pyrotech., 2025, e12022.
https://doi.org/10.1002/prep.12022
(46) Tiwari, A.; Pandey, K.; Das, P.; Ghule, V. D.; Kumar, D. Benzofuroxan‐Based Energetic Materials with Alternating Nitro and Hydroxyl Groups: Synthesis, Characterization, and Energetic Properties. Eur. J. Org. Chem., 2024, 27, e202400794.
https://doi.org/10.1002/ejoc.202400794
(45) Bhatia, P.; Das, P.; Kumar, D. Engaging Two Anions with Single Cation in Energetic Salts: Approach for Optimization of Oxygen Balance in Energetic Materials. ACS Appl. Mater. Interfaces, 2024, 16, 64846−64857.
https://doi.org/10.1021/acsami.4c15237
(44) Bhatia, P.; Das, P.; Bijlwan, A.; Kumar, D. Systematic Synthesis of Thermally Stable Zwitterionic Energetic Materials Based on 4-Hydroxy-3,5-dinitropyrazole. Org. Lett., 2024, 26, 9781−9786.
https://pubs.acs.org/doi/10.1021/acs.orglett.4c03822
(43) Pandey, K.; Das, P.; Khatri, M.; Kumar, D. N-Methylene-C-Linked Nitropyrazoles and 1,2,4-Triazolone-3-one: Thermally Stable Energetic Materials with Reduced Sensitivity. Dalton Trans., 2024, 53, 17179-17189.
https://doi.org/10.1039/D4DT02494J
(42) Bhatia, P.; Pandey, K.; Kumar, D. Zwitterionic Energetic Materials: Synthesis, Structural Diversity and Energetic Properties. Chem. Asian J., 2024, 19, e20240048.
https://doi.org/10.1002/asia.202400481
(41) Pandey, K.; Das, P.; Bhatia, P.; Ghule, V. D.; Kumar, D. Insights into Structural and Energetic Features of 3,5-Dinitropyrazole-4-Carboxylic Acid and Its Energetic Salts. Cryst. Growth Des., 2024, 24, 6790−6799.
https://doi.org/10.1021/acs.cgd.4c00780
(40) Bhatia, P.; Jangra, P.; Ghule, V. D.; Kumar, D. Combination of Namino-1,2,4-triazole and 4-hydroxy-3,5-dinitropyrazole for the Synthesis of High Performing Explosives. J. Heterocycl. Chem. 2024, 61 (8), 1299−1305.
https://doi.org/10.1002/jhet.4856
(39) Bhatia, P.; Ghule, V. D.; Kumar, D. Time for mixing: Mixed dicationic energetic salts based on methylene bridged 4-hydroxy-3,5-dinitropyrazole and tetrazole for tunable performance. Energy Mater. Front. 2024, 5, 105– 111.
https://doi.org/10.1016/j.enmf.2024.05.001
(38) Pandey, K.; Tiwari, A.; Singh, J.; Bhatia, P.; Das, P.; Kumar, D.; Shreeve, J. M. Pushing the Limit of Oxygen Balance on a Benzofuroxan Framework: K2DNDP as an Extremely Dense and Thermally Stable Material as a Substitute for Lead Azide. Org. Lett. 2024, 26 (9), 1952−1958.
https://doi.org/10.1021/acs.orglett.4c00398
(37) Bhatia, P.; Priya, P. S.; Das, P.; Kumar, D. N-Acetonitrile functionalized 3-nitrotriazole: precursor to nitrogen rich stable and insensitive energetic materials. Energy Mater. Front. 2024, 5, 8– 16. https://doi.org/10.1016/j.enmf.2024.01.003
(36) Das, P.; Bhatia, P.; Pandey, K.; Kumar, D. Taming of 4-azido-3,5-dinitropyrazole based energetic materials. Mater. Adv. 2024, 5, 171– 182.
https://doi.org/10.1039/D3MA00742A
(35) Bhatia, P.; Pandey, K.; Das, P.; Kumar, D. Bis(dinitropyrazolyl)methanes Spruced up with Hydroxyl Groups: High Performance Energetic Salts with Reduced Sensitivity. Chem. Commun. 2023, 59, 14110– 14113.
https://doi.org/10.1039/D3CC04445A
(34) Bhatia, P.; Pandey, K.; Avasthi, B.; Das, P.; Ghule, V. D.; Kumar, D. Controlling the Energetic Properties of N-Methylene-C-Linked 4-Hydroxy-3,5-dinitropyrazole- and Tetrazole-Based Compounds via a Selective Mono- and Dicationic Salt Formation Strategy. J. Org. Chem. 2023, 88, 15085– 15096.
https://doi.org/10.1021/acs.joc.3c01530
(33) Pandey, K.; Bhatia, P.; Mohammad, K.; Ghule, V. D.; Kumar, D. Polynitro-Functionalized 4-Phenyl-1H-Pyrazoles as Heat-Resistant Explosives. Org. Biomol. Chem. 2023, 21 (32), 6604– 6616.
https://doi.org/10.1039/D3OB00949A
(32) Pandey, K.; Bhatia, P.; P. Dolui, P.; Ghule, V. D.; Kumar, D. Connecting Energetic Nitropyrazole and Nitrobenzene Moieties with C−C Bonds using Suzuki Cross-Coupling Reaction: A Novel Route to Thermally Stable Energetic Materials. Asian J. Org. Chem. 2022, 11, 202.
(31) Zhao, G.; He, C.; Kumar, D.; Hooper, J. P.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. 1,3,5-Triiodo-2,4,6-Trinitrobenzene (TITNB) from Benzene: Balancing Performance and High Thermal Stability of Functional Energetic Materials. Chem. Eng. J. 2019, 378, 122119.
https://doi.org/https://doi.org/10.1016/j.cej.2019.122119
(30) Zhao, G.; Yin, P.; Kumar, D.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Bis (3-Nitro-1-(Trinitromethyl)-1 H-1, 2, 4-Triazol-5-Yl) Methanone: An Applicable and Very Dense Green Oxidizer. J. Am. Chem. Soc. 2019, 141, 19581–19584.
https://doi.org/10.1021/jacs.9b11326
(29) Zhang, P.; Kumar, D.; Zhang, L.; Shem-Tov, D.; Petrutik, N.; Chinnam, A. K.; Yao, C.; Pang, S.; Gozin, M. Energetic Butterfly: Heat-Resistant Diaminodinitro Trans-Bimane. Molecules 2019, 24 (23).
https://doi.org/10.3390/molecules24234324
(28) Kumar, D.; Elias, A. J. The Explosive Chemistry of Nitrogen: A Fascinating Journey From 9th Century to the Present. Resonance 2019, 24, 1253–1271.
https://doi.org/10.1007/s12045-019-0893-2
(27) Zhao, G.; Kumar, D.; Hu, L.; Shreeve, J. M. A Safe and Scaled-Up Route to Inert Ammonia Oxide Hydroxylammonium Azide (H7N5O2), Hydrazinium Azide (H5N5), and Ammonium Azide (H4N4). ACS Appl. Energy Mater. 2019, 2 (9), 6919–6923.
https://doi.org/10.1021/acsaem.9b01447
(26) Dharavath, S.; Tang, Y.; Kumar, D.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. A Halogen-Free Green High Energy Density Oxidizer from H-FOX. European J. Org. Chem. 2019, 2019 (20), 3142–3145.
https://doi.org/10.1002/ejoc.201900415
(25) Zhao, G.; He, C.; Kumar, D.; Hooper, J. P.; Imler, G. H.; Parrish, D. A.; Jean’ne, M. S. Functional Energetic Biocides by Coupling of Energetic and Biocidal Polyiodo Building Blocks. Chem. Eng. J. 2019, 368, 244–251.
https://doi.org/10.1016/j.cej.2019.02.192
(24) Zhao, G.; Kumar, D.; Yin, P.; He, C.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Construction of Polynitro Compounds as High-Performance Oxidizers via a Two-Step Nitration of Various Functional Groups. Org. Lett. 2019, 21 (4), 1073–1077.
https://doi.org/10.1021/acs.orglett.8b04114
(23) Kumar, D.; Tang, Y.; He, C.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Multipurpose Energetic Materials by Shuffling Nitro Groups on a 3, 3′‐Bipyrazole Moiety. Chem. Eur. J. 2018, 24 (65), 17220–17224.
https://doi.org/10.1002/chem.201804418
(22) Kumar Chinnam, A.; Shlomovich, A.; Shamis, O.; Petrutik, N.; Kumar, D.; Wang, K.; Komarala, E. P.; Tov, D. S.; Sućeska, M.; Yan, Q. L.; Gozin, M. Combustion of Energetic Iodine-Rich Coordination Polymer – Engineering of New Biocidal Materials. Chem. Eng. J. 2018, 350, 1084–1091.
https://doi.org/https://doi.org/10.1016/j.cej.2018.06.056
(21) Zhao, G.; Kumar, D.; He, C.; Hooper, J. P.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. New Generation Agent Defeat Weapons: Energetic N,N′-Ethylene-Bridged Polyiodoazoles. Chem. – A Eur. J. 2017, 23, 16753–16757.
https://doi.org/https://doi.org/10.1002/chem.201704798
(20) Tang, Y.; Kumar, D.; Shreeve, J. M. Balancing Excellent Performance and High Thermal Stability in a Dinitropyrazole Fused 1, 2, 3, 4-Tetrazine. J. Am. Chem. Soc. 2017, 139, 13684–13687.
https://doi.org/10.1021/jacs.7b08789
(19) Kumar, D.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. N-Acetonitrile Functionalized Nitropyrazoles: Precursors to Insensitive Asymmetric N-Methylene-C Linked Azoles. Chem. - A Eur. J. 2017, 23, 7876–7881.
https://doi.org/10.1002/chem.201700786
(18) Kumar, D.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. A Highly Stable and Insensitive Fused Triazolo–Triazine Explosive (TTX). Chem. - A Eur. J. 2017, 23, 1743–1747.
https://doi.org/10.1002/chem.201604919
(17) Kumar, D.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Aminoacetonitrile as Precursor for Nitrogen Rich Stable and Insensitive Asymmetric: N -Methylene-C Linked Tetrazole-Based Energetic Compounds. J. Mater. Chem. A 2017, 5, 16767–16775.
https://doi.org/10.1039/c7ta05394k
(16) Kumar, D.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. 3,4,5-Trinitro-1-(Nitromethyl)-1H-Pyrazole (TNNMP): A Perchlorate Free High Energy Density Oxidizer with High Thermal Stability. J. Mater. Chem. A 2017, 5, 10437–10441.
https://doi.org/10.1039/C7TA02585H
(15) Kumar, D.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Resolving Synthetic Challenges Faced in the Syntheses of Asymmetric: N, N ′-Ethylene-Bridged Energetic Compounds. New J. Chem. 2017, 41, 4040–4047.
https://doi.org/10.1039/c7nj00327g
(14) Deb, M.; Kumar, D.; Singh, J.; Elias, A. J. Unprecedented Formation of π-Copper Complexes during Sonogashira Coupling: Synthesis of a Unique, Recyclable, Ethynyl Ferrocene Derived Cu(I) Specific Ligand. Organometallics 2016, 35, 1086–1091.
https://doi.org/10.1021/acs.organomet.6b00069
(13) Kumar, D.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Asymmetric: N, N ′-Ethylene-Bridged Azole-Based Compounds: Two Way Control of the Energetic Properties of Compounds. J. Mater. Chem. A 2016, 4, 9931–9940.
https://doi.org/10.1039/c6ta03536a
(12) Kumar, D.; He, C.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Connecting Energetic Nitropyrazole and Aminotetrazole Moieties with: N, N ′-Ethylene Bridges: A Promising Approach for Fine Tuning Energetic Properties. J. Mater. Chem. A 2016, 4, 9220–9228.
https://doi.org/10.1039/c6ta02387h
(11) Kumar, D.; Deb, M.; Singh, J.; Singh, N.; Keshav, K.; Elias, A. J. Chemistry of the Highly Stable Hindered Cobalt Sandwich Compound (Η5-Cp)Co(Η4-C4Ph4) and Its Derivatives. Coord. Chem. Rev. 2016, 306, 115–170.
https://doi.org/https://doi.org/10.1016/j.ccr.2015.05.012
(10) Kumar, D.; Singh, N.; Elias, A. J.; Malik, P.; Allen, C. W. Reactions of Alkyne- and Butadiyne-Derived Fluorinated Cyclophosphazenes with Diiron and Dimolybdenum Carbonyls. Inorg. Chem. 2014, 53, 10674–10684.
https://doi.org/10.1021/ic501821v
(9) Biswas, R.; Keshav, K.; Kumar, D.; Elias, A. J. Reactions of Allylzinc Bromide with Ethynylferrocene Derived Fluorinated Cyclophosphazenes. J. Organomet. Chem. 2014, 768, 157–162.
https://doi.org/https://doi.org/10.1016/j.jorganchem.2014.06.025
(8) Kumar, D.; Elias, A. J. Reduction Reactions of Alkyne and Butadiyne Derived Fluorinated Cyclophosphazenes. J. Fluor. Chem. 2014, 166, 69–77.
https://doi.org/https://doi.org/10.1016/j.jfluchem.2014.07.022
(7) Singh, J.; Kumar, D.; Singh, N.; Elias, A. J. New Chiral Palladacycles from an Unprecedented Cyclopalladation of Cyclobutadiene-Bound Phenyl Groups of Cobalt Sandwich Compounds. Organometallics 2014, 33, 1044–1052.
https://doi.org/10.1021/om500004n
(6) Kumar, D.; Singh, J.; Elias, A. J. Chiral Multidentate Oxazoline Ligands Based on Cyclophosphazene Cores: Synthesis, Characterization and Complexation Studies. Dalt. Trans. 2014, 43, 13899–13912.
https://doi.org/10.1039/C4DT01741B
(5) Keshav, K.; Kumar, D.; Elias, A. J. Synthesis, Spectral, and Structural Studies of Porphyrins Having Sterically Hindered [Η5-CpCo(Η4-C4Ph4)] Cobalt Sandwich Units at the Meso Positions. Inorg. Chem. 2013, 52, 12351–12366.
https://doi.org/10.1021/ic401099c
(4) Kumar, D.; Singh, N.; Keshav, K.; Elias, A. J. Synthesis and Structural Characterization of the First Examples of Butadiynyl Derived Cyclic Fluorinated Phosphazenes. J. Fluor. Chem. 2013, 153, 48–56.
https://doi.org/https://doi.org/10.1016/j.jfluchem.2013.05.020
(3) Mandapati, P.; Singh, N.; Kumar, D.; Elias, A. J. Synthesis and Characterization of Difunctionalized Derivatives of the Cyclobutadiene Linked Dimeric Cobalt Sandwich Compound [(Η5-Cp)Co(Η4-C4Ph3)]2. J. Organomet. Chem. 2012, 716, 208–215.
https://doi.org/https://doi.org/10.1016/j.jorganchem.2012.06.026
(2) Kumar, M. S.; Kumar, D.; Elias, A. J. Synthesis of (β-Phenylethynyl)-Gem-Diphenyltrifluorocyclotriphosphazene and Its Reaction with RCpCo(PPh3)2 [R=MeOC(O)]. Inorganica Chim. Acta 2011, 372, 175–182.
https://doi.org/https://doi.org/10.1016/j.ica.2011.01.064
(1) Kumar, D.; Singh, N.; Keshav, K.; Elias, A. J. Ring-Closing Metathesis Reactions of Terminal Alkene-Derived Cyclic Phosphazenes. Inorg. Chem. 2011, 50, 250.